4,059 | 47 | 102 |
下载次数 | 被引频次 | 阅读次数 |
回顾了大变形晶体塑性理论的发展历程、本构模型和均匀化方法,综述了晶体塑性理论成果和典型应用场合。从流动模型、加工硬化模型和状态变量演化的角度对比分析了唯象的和基于物理机理的晶体塑性模型的理论基础和优缺点;阐述了平均场晶体塑性模型和全场晶体塑性模型的特点和适用场合;从金属多晶体材料的各向异性、织构演化、非均匀塑性变形、可成形性、尺度效应、损伤断裂行为、热变形和微观组织演化、虚拟测试等角度介绍了晶体塑性模拟的典型应用场合,并展望了该领域的未来发展趋势。
Abstract:The development history,constitutive models,and homogenization schemes of crystal plasticity theory with large deformation were reviewed. Several theoretical achievements and typical applications of crystal plasticity were outlined. The theories basis,advantages and disadvantages of both phenomenological and physically based crystal plasticity models were compared and analyzed in terms of flow models,work hardening models,and the evolution of state variables. The characteristics and applications of both mean-field and full-field crystal plasticity models were illustrated. The typical applications of crystal plasticity simulations were introduced from the aspects of anisotropy,texture evolution,non-uniform plastic deformation,formability,size effect,damage and fracture behavior,hot deformation and microstructure evolution,and virtual testing etc. And future development trends in this field were pointed out.
[1]HUANG Y.A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program[M].Cambridge:Harvard University,1991.
[2]LEBENSOHN R A,TOMéC N.A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals:application to zirconium alloys[J].Acta Metallurgica et Materialia,1993,41(9):2611-2624.
[3]MARIN E B,DAWSON P R.On modelling the elasto-viscoplastic response of metals using polycrystal plasticity[J].Computer Methods in Applied Mechanics and Engineering,1998,165(1):1-21.
[4]ROTERS F,DIEHL M,SHANTHRAJ P,et al.DAMASK-the düsseldorf advanced material simulation kit for modeling multiphysics crystal plasticity,thermal,and damage phenomena from the single crystal up to the component scale[J].Computational Materials Science,2019,158:420-478.
[5]YAGHOOBI M,GANESAN S,SUNDAR S,et al.PRISMS-plasticity:an open-source crystal plasticity finite element software[J].Computational Materials Science,2019,169:109078.
[6]TAYLOR G I.The mechanism of plastic deformation of crystals.Part I.Theoretical[J].Proceedings of the Royal Society of London Series A,Containing Papers of a Mathematical and Physical Character,1934,145(855):362-387.
[7]SCHMID E.Yield point of a crystals:critical shear stress law[J].Proc.Internat.Congr.Appl.Mech.,1924:342.
[8]HILL R.Generalized constitutive relations for incremental deformation of metal crystals by multislip[J].Journal of the Mechanics and Physics of Solids,1966,14(2):95-102.
[9]HILL R,RICE J R.Constitutive analysis of elastic-plastic crystals at arbitrary strain[J].Journal of the Mechanics and Physics of Solids,1972,20(6):401-413.
[10]ASARO R J.Crystal plasticity[J].Jornal of Applied Mechanics,1983,50:921-934.
[11]ROTERS F,EISENLOHR P,HANTCHERLI L,et al.Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:theory,experiments,applications[J].Acta Materialia,2010,58(4):1152-1211.
[12]KALIDINDI S R.Incorporation of deformation twinning in crystal plasticity models[J].Journal of the Mechanics and Physics of Solids,1998,46(2):267-271.
[13]KOCKS U F,MECKING H.Physics and phenomenology of strain hardening:the FCC case[J].Progress in Materials Science,2003,48(3):171-273.
[14]LOGAN R W,HOSFORD W F.Upper-bound anisotropic yield locus calculations assuming〈111〉-pencil glide[J].International Journal of Mechanical Sciences,1980,22(7):419-430.
[15]YOO M H.Slip,twinning,and fracture in hexagonal close-packed metals[J].Metallurgical Transactions A,1981,12(3):409-418.
[16]CHRISTIAN J W,MAHAJAN S.Deformation twinning[J].Progress in Materials Science,1995,39(1-2):1-157.
[17]BARNETT M R.Twinning and the ductility of magnesium alloys:Part I:“tension”twins[J].Materials Science and Engineering:A,2007,464(1):1-7.
[18]BARNETT M R.Twinning and the ductility of magnesium alloys:Part II.“contraction”twins[J].Materials Science and Engineering:A,2007,464(1):8-16.
[19]SALEM A A,KALIDINDI S R,DOHERTY R D,et al.Strain hardening due to deformation twinning inα-titanium:mechanisms[J].Metallurgical and Materials Transactions A,2006,37(1):259-68.
[20]WASILEWSKI R J.Mechanism of Bcc twinning:shear or shuffle?[J].Matallurgical Transactions,1970,1(9):2641-2643.
[21]WANG J,YADAV S K,HIRTH J P,et al.Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals[J].Materials Research Letters,2013,1(3):126-132.
[22]TOMéC N,MAUDLIN P J,LEBENSOHN R A,et al.Mechanical response of zirconium-I.derivation of a polycrystal constitutive law and finite element analysis[J].Acta Materialia,2001,49(15):3085-3096.
[23]WANG Y N,HUANG J C.Texture analysis in hexagonal materials[J].Materials Chemistry and Physics,2003,81(1):11-26.
[24]KALIDINDI S R.A crystal plasticity framework for deformation twinning[J].Continuum Scale Simulation of Engineering of Materials,2004,543-560.
[25]SALEM A A,KALIDINDI S R,SEMIATIN S L.Strain hardening due to deformation twinning inα-titanium:constitutive relations and crystal-plasticity modeling[J].Acta Materialia,2005,53(12):3495-3502.
[26]BIELER T R,FALLAHI A,NG B C,et al.Fracture initiation/propagation parameters for duplex Ti Al grain boundaries based on twinning,slip,crystal orientation,and boundary misorientation[J].Intermetallics,2005,13(9):979-984.
[27]AGNEW S R,BROWN D W,TOMéC N.Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction[J].Acta Materialia,2006,54(18):4841-4852.
[28]LEBENSOHN R A,TOMéC N.A study of the stress state associated with twin nucleation and propagation in anisotropic materials[J].Philosophical Magazine A:Physics of Condensed Matter,Structure,Defects and Mechanical Properties,1993,67(1):187-206.
[29]ARUL KUMAR M,BEYERLEIN I J,LEBENSOHN R A,et al.Modeling the effect of neighboring grains on twin growth in HCPpolycrystals[J].Modelling and Simulation in Materials Science and Engineering,2017,25(6):064007.
[30]FENG B,BRONKHORST C A,ADDESSIO F L,et al.Coupled elasticity,plastic slip,and twinning in single crystal titanium loaded by split-Hopkinson pressure bar[J].Journal of the Mechanics and Physics of Solids,2018,119:274-297.
[31]LEE M G,KIM S J,HAN H N.Crystal plasticity finite element modeling of mechanically induced martensitic transformation(MIMT)in metastable austenite[J].International Journal of Plasticity,2010,26(5):688-710.
[32]PETERSMANN M,ANTRETTER T,CAILLETAUD G,et al.U-nification of the non-linear geometric transformation theory of martensite and crystal plasticity-application to dislocated lath martensite in steels[J].International Journal of Plasticity,2019,119:140-155.
[33]JIA N,ROTERS F,EISENLOHR P,et al.Non-crystallographic shear banding in crystal plasticity FEM simulations:example of texture evolution inα-brass[J].Acta Materialia,2012,60(3):1099-1115.
[34]JIA N,ROTERS F,EISENLOHR P,et al.Simulation of shear banding in heterophase co-deformation:example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites[J].Acta Materialia,2013,61(12):4591-4606.
[35]JIA N,RAABE D,ZHAO X.Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite[J].Acta Materialia,2014,76:238-251.
[36]VENKATARAMANI G,KIRANE K,GHOSH S.Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model[J].International Journal of Plasticity,2008,24(3):428-454.
[37]ADMAL N C,PO G,MARIAN J.A unified framework for polycrystal plasticity with grain boundary evolution[J].International Journal of Plasticity,2018,106:1-30.
[38]MEISSONNIER F T,BUSSO E P,O'DOWD N P.Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains[J].International Journal of Plasticity,2001,17(4):601-640.
[39]DOQUET V.Twinning and multiaxial cyclic plasticity of a low stacking-fault-energy f.c.c.alloy[J].Acta Metallurgica et Materialia,1993,41(8):2451-2459.
[40]SCHL?GL S M,FISCHER F D.The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of Ti Al:a micromechanical model[J].Philosophical Magazine A,1997,75(3):621-636.
[41]KALIDINDI S R.Incorporation of deformation twinning in crystal plasticity models[J].Journal of the Mechanics and Physics of Solids,1998,46(2):267-290.
[42]PEIRCE D,ASARO R J,NEEDLEMAN A.An analysis of nonuniform and localized deformation in ductile single crystals[J].Acta Metallurgica,1982,30(6):1087-1119.
[43]KALIDINDI S R,BRONKHORST C A,ANAND L.Crystallographic texture evolution in bulk deformation processing of FCCmetals[J].Journal of the Mechanics and Physics of Solids,1992,40(3):537-569.
[44]HOUTTE P V.Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning[J].Acta Metallurgica,1978,26(4):591-604.
[45]ZHANG H M,DONG X H,DU D P,et al.A unified physically based crystal plasticity model for FCC metals over a wide range of temperatures and strain rates[J].Materials Science and Engineering:A,2013,564:431-441.
[46]ZHANG H M,DONG X H,WANG Q,et al.Micro-bending of metallic crystalline foils by non-local dislocation density based crystal plasticity finite element model[J].Transactions of Nonferrous Metals Society of China,2013,23(11):3362-3371.
[47]ZHANG H M,DONG X H.Physically based crystal plasticity FEMincluding geometrically necessary dislocations:numerical implementation and applications in micro-forming[J].Computational Materials Science,2015,110:308-320.
[48]MA A,ROTERS F.A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals[J].Acta Materialia,2004,52(12):3603-3612.
[49]MA A,ROTERS F,RAABE D.A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations[J].Acta Materialia,2006,54(8):2169-2179.
[50]KESHAVARZ S,GHOSH S.Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys[J].Acta Materialia,2013,61(17):6549-6561.
[51]HUANG M,LI Z,TONG J.The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature[J].International Journal of Plasticity,2014,61:112-127.
[52]ZECEVIC M,KNEZEVIC M.A dislocation density based elastoplastic self-consistent model for the prediction of cyclic deformation:application to AA6022-T4[J].International Journal of Plasticity,2015,72:200-217.
[53]NGUYEN T,LUSCHER D J,WILKERSON J W.A dislocationbased crystal plasticity framework for dynamic ductile failure of single crystals[J].Journal of the Mechanics and Physics of Solids,2017,108:1-29.
[54]GHORBANPOUR S,ZECEVIC M,KUMAR A,et al.A crystal plasticity model incorporating the effects of precipitates in superalloys:application to tensile,compressive,and cyclic deformation of Inconel 718[J].International Journal of Plasticity,2017,99:162-185.
[55]PO G,HUANG Y,GHONIEM N.A continuum dislocation-based model of wedge microindentation of single crystals[J].International Journal of Plasticity,2019,114:72-86.
[56]SUDMANNS M,STRICKER M,WEYGAND D,et al.Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity[J].Journal of the Mechanics and Physics of Solids,2019,132:103695.
[57]KAISER T,MENZEL A.A dislocation density tensor-based crystal plasticity framework[J].Journal of the Mechanics and Physics of Solids,2019,131:276-302.
[58]FOLLANSBEE P S,KOCKS U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J].Acta Metallurgica,1988,36(1):81-93.
[59]MECKING H,KOCKS U F.Kinetics of flow and strain-hardening[J].Acta Metallurgica,1981,29(11):1865-1875.
[60]章海明.位错密度晶体塑性模型及在微成形模拟中的应用[D].上海:上海交通大学,2013.ZHANG Haiming.Dislocation density based crystal plasticity finite element method for the simulation of micro-forming processes[D].Shanghai:Shanghai Jiao Tong University,2013.
[61]FRANCIOSI P.The concepts of latent hardening and strain hardening in metallic single crystals[J].Acta Metallurgica,1985,33(9):1601-1612.
[62]NICAISE N,BERBENNI S,WAGNER F,et al.Coupled effects of grain size distributions and crystallographic textures on the plastic behaviour of IF steels[J].International Journal of Plasticity,2011,27(2):232-249.
[63]BERTIN N,TOMéC N,BEYERLEIN I J,et al.On the strength of dislocation interactions and their effect on latent hardening in pure magnesium[J].International Journal of Plasticity,2014,62:72-92.
[64]PEETERS B,KALIDINDI S R,VAN HOUTTE P,et al.A crystal plasticity based work-hardening/softening model for b.c.c.metals under changing strain paths[J].Acta Materialia,2000,48(9):2123-2133.
[65]ROTERS F,RAABE D,GOTTSTEIN G.Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables[J].Acta Materialia,2000,48(17):4181-4189.
[66]GRILLI N,JANSSENS K G F,VAN SWYGENHOVEN H.Crystal plasticity finite element modelling of low cycle fatigue in fcc metals[J].Journal of the Mechanics and Physics of Solids,2015,84:424-435.
[67]KNEZEVIC M,ZECEVIC M,BEYERLEIN I J,et al.Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr[J].Acta Materialia,2015,88:55-73.
[68]BEYERLEIN I J,TOMéC N.A dislocation-based constitutive law for pure Zr including temperature effects[J].International Journal of Plasticity,2008,24(5):867-895.
[69]DANCETTE S,DELANNAY L,RENARD K,et al.Crystal plasticity modeling of texture development and hardening in TWIPsteels[J].Acta Materialia,2012,60(5):2135-2145.
[70]ARSENLIS A,PARKS D M,BECKER R,et al.On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals[J].Journal of the Mechanics and Physics of Solids,2004,52(6):1213-1246.
[71]ARSENLIS A,PARKS D M.Modeling the evolution of crystallographic dislocation density in crystal plasticity[J].Journal of the Mechanics and Physics of Solids,2002,50(9):1979-2009.
[72]GURTIN M E.On the plasticity of single crystals:Free energy,microforces,plastic-strain gradients[J].Journal of the Mechanics and Physics of Solids,2000,48(5):989-1036.
[73]GURTIN M E.A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[J].Journal of the Mechanics and Physics of Solids,2002,50(1):5-32.
[74]GURTIN M E,ANAND L,LELE S P.Gradient single-crystal plasticity with free energy dependent on dislocation densities[J].Journal of the Mechanics and Physics of Solids,2007,55(9):1853-1878.
[75]EVERS L P.Strain gradient crystal plasticity based on dislocation densities[D].Eindhoven:Technische Universiteit Eindhoven,2003.
[76]CHEONG K S,BUSSO E P,ARSENLIS A.A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts[J].International Journal of Plasticity,2005,21(9):1797-1814.
[77]HAN C S,GAO H,HUANG Y,et al.Mechanism-based strain gradient crystal plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids,2005,53(5):1188-1203.
[78]HAN C S,GAO H,HUANG Y,et al.Mechanism-based strain gradient crystal plasticity-II.Analysis[J].Journal of the Mechanics and Physics of Solids,2005,53(5):1204-1222.
[79]GAO H,HUANG Y,NIX W D,et al.Mechanism-based strain gradient plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263.
[80]LEE W B,CHEN Y P.Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity[J].International Journal of Plasticity,2010,26(10):1527-1540.
[81]ZHANG H M,DONG X H.Experimental and numerical studies of coupling size effects on material behaviors of polycrystalline metallic foils in microscale plastic deformation[J].Materials Science and Engineering:A,2016,658:450-462.
[82]CERMELLI P,GURTIN M E.On the characterization of geometrically necessary dislocations in finite plasticity[J].Journal of the Mechanics and Physics of Solids,2001,49(7):1539-1568.
[83]ARSENLIS A,PARKS D M.Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density[J].Acta Materialia,1999,47(5):1597-1611.
[84]EVERS L P,PARKS D M,BREKELMANS W A M,et al.Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation[J].Journal of the Mechanics and Physics of Solids,2002,50(11):2403-2424.
[85]XIAO X Z,CHEN L R,YU L,et al.Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory[J].International Journal of Plasticity,2019,116:216-231.
[86]ZHANG H M,DONG X H,WANG Q,et al.An effective semiimplicit integration scheme for rate dependent crystal plasticity using explicit finite element codes[J].Computational Materials Science,2012,54:208-18.
[87]ZHANG H M,DIEHL M,ROTERS F,et al.A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[J].International Journal of Plasticity,2016,80:111-138.
[88]LEE M G,LIM H,ADAMS B L,et al.A dislocation densitybased single crystal constitutive equation[J].International Journal of Plasticity,2010,26(7):925-938.
[89]GONG J C,BENJAMIN BRITTON T,CUDDIHY M A,et al.〈a〉Prismatic,〈a〉basal,and〈c+a〉slip strengths of commercially pure Zr by micro-cantilever tests[J].Acta Materialia,2015,96:249-257.
[90]HASIJA V,GHOSH S,MILLS M J,et al.Deformation and creep modeling in polycrystalline Ti-6Al alloys[J].Acta Materialia,2003,51(15):4533-4549.
[91]LIU M,LU C,TIEU K A,et al.A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation[J].Scientific Reports,2015,5(1):15072.
[92]CHAKRABORTY A,EISENLOHR P.Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations[J].European Journal of Mechanics,A/Solids,2017,66:114-124.
[93]BAUER O,HANSEN M,G?LER F V,et al.Mitteilungen der deutschen Materialprüfungsanstalten[M].Berlin:Springer Berlin Heidelberg,1929.
[94]TAYLOR G I.Plastic strain in metals[J].Journal of the Institute of Metals,1938,62(1):307-324.
[95]BECKER R,PANCHANADEESWARAN S.Effects of grain interactions on deformation and local texture in polycrystals[J].Acta Metallurgica et Materialia,1995,43(7):2701-2719.
[96]VAN HOUTTE P.A comprehensive mathematical formulation of an extended Taylor-Bishop-Hill model featuring relaxed constraints,the Renouard-Wintenberger theory and a strain rate sensitivity model[J].Textures and Microstructures,1988,8-9:313-350.
[97]VAN HOUTTE P,DELANNAY L,KALIDINDI S R.Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction[J].International Journal of Plasticity,2002,18(3):359-377.
[98]HABRAKEN A M.Modelling the plastic anisotropy of metals[J].Archives of Computational Methods in Engineering,2004,11(1):3-96.
[99]MOLINARI A,CANOVA G R,AHZI S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metallurgica,1987,35(12):2983-2994.
[100]KR?NER E.Zur plastischen verformung des vielkristalls[J].Acta Metallurgica,1961,9(2):155-161.
[101]BUDIANSKY B,WU T T.Theoretical prediction of plastic strains of polycrystals[C]//Proceedings of the fourth US National Congress of Applied Mechanics.Cambridge,1962:1175-1185.
[102]HUTCHINSON J W.Elastic-plastic behaviour of polycrystalline metals and composites[J].Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1970,319(1537):247-272.
[103]IWAKUMA T,NEMAT-NASSER S.Finite elastic-plastic deformation of polycrystalline metals[J].Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1984,394(1806):87-119.
[104]CHOI S H,BREM J C,BARLAT F,et al.Macroscopic anisotropy in AA5019A sheets[J].Acta Materialia,2000,48(8):1853-1863.
[105]STEGLICH D,JEONG Y,ANDAR M O,et al.Biaxial deformation behaviour of AZ31 magnesium alloy:crystal-plasticity-based prediction and experimental validation[J].International Journal of Solids and Structures,2012,49(25):3551-3561.
[106]KABIRIAN F,KHAN A S,GNUPEL-HERLOD T.Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions[J].International Journal of Plasticity,2015,68:1-20.
[107]WANG H,CLAUSEN B,CAPOLUNGO L,et al.Stress and strain relaxation in magnesium AZ31 rolled plate:In-situ neutron measurement and elastic viscoplastic polycrystal modeling[J].International Journal of Plasticity,2016,79:275-292.
[108]MANDAL S,GOCKEL B T,BALACHANDRAN S,et al.Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model[J].International Journal of Plasticity,2017,94:57-73.
[109]KIM H,BARLAT F,LEE Y,et al.A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes[J].International Journal of Plasticity,2018,111:85-106.
[110]TANG T,ZHOU G,LI Z,et al.A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method and its application to light weight alloys[J].International Journal of Plasticity,2019,116:159-191.
[111]CHELLADURAI I,ADAMS D,FULLWOOD D T,et al.Modeling of trans-grain twin transmission in AZ31 via a neighborhoodbased viscoplastic self-consistent model[J].International Journal of Plasticity,2019,117:21-32.
[112]ZECEVIC M,PANTLEON W,LEBENSOHN R A,et al.Predicting intragranular misorientation distributions in polycrystalline metals using the viscoplastic self-consistent formulation[J].Acta Materialia,2017,140:398-410.
[113]TIAMIYU A A,TARI V,SZPUNAR J A,et al.Effects of grain refinement on the quasi-static compressive behavior of AISI 321austenitic stainless steel:EBSD,TEM,and XRD studies[J].International Journal of Plasticity,2018,107:79-99.
[114]REN W,LI J,XIN R.Texture dependent shifting behavior of neutral layer in bending of magnesium alloys[J].Scripta Materialia,2019,170:6-10.
[115]MA C,WANG H,HAMA T,et al.Twinning and detwinning behaviors of commercially pure titanium sheets[J].International Journal of Plasticity,2019,121:261-279.
[116]GURAO N P,SETHURAMAN S,SUWAS S.Evolution of texture and microstructure in commercially pure titanium with change in strain path during rolling[J].Metallurgical and Materials Transactions A,2013,44(3):1497-507.
[117]WANG H,WU P D,TOMéC N,et al.A finite strain elasticviscoplastic self-consistent model for polycrystalline materials[J].Journal of the Mechanics and Physics of Solids,2010,58(4):594-612.
[118]WANG H,WU P D,TOMéC N,et al.A constitutive model of twinning and detwinning for hexagonal close packed polycrystals[J].Materials Science and Engineering:A,2012,555:93-98.
[119]WANG H,WU P D,WANG J,et al.A crystal plasticity model for hexagonal close packed(HCP)crystals including twinning and de-twinning mechanisms[J].International Journal of Plasticity,2013,49:36-52.
[120]VAN HOUTTE P,LI S,SEEFELDT M,et al.Deformation texture prediction:from the Taylor model to the advanced Lamel model[J].International Journal of Plasticity,2005,21(3):589-624.
[121]ERINOSHO T O,COLLINS D M,WILKINSON A J,et al.Assessment of X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading[J].International Journal of Plasticity,2016,83:1-18.
[122]FUJITA N,ISHIKAWA N,ROTERS F,et al.Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents[J].International Journal of Plasticity,2018,104:39-53.
[123]SHANTHRAJ P,EISENLOHR P,DIEHL M,et al.Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[J].International Journal of Plasticity,2015,66:31-45.
[124]EISENLOHR P,DIEHL M,LEBENSOHN R A,et al.A spectral method solution to crystal elasto-viscoplasticity at finite strains[J].International Journal of Plasticity,2013,46:37-53.
[125]ZHANG H M,LIU J,SUI D S,et al.Study of microstructural grain and geometric size effects on plastic heterogeneities at grainlevel by using crystal plasticity modeling with high-fidelity representative microstructures[J].International Journal of Plasticity,2018,100:69-89.
[126]JASPREET S N,ABHIJIT B,RAJA M,et al.An efficient fullfield crystal plasticity-based M-K framework to study the effect of3D microstructural features on the formability of polycrystalline materials[J].Modelling and Simulation in Materials Science and Engineering,2018,26(7):075002.
[127]ZHAO P Y,SONG EN LOW T,WANG Y Z,et al.An integrated full-field model of concurrent plastic deformation and microstructure evolution:application to 3D simulation of dynamic recrystallization in polycrystalline copper[J].International Journal of Plasticity,2016,80:38-55.
[128]LATYPOV M I,SHIN S,DE COOMAN B C,et al.Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel[J].Acta Materialia,2016,108:219-228.
[129]BERTIN M,DU C,HOEFNAGELS J P M,et al.Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation[J].Acta Materialia,2016,116:321-331.
[130]WU P D,NEALE K W,VAN DER GIESSEN E,et al.Crystal plasticity forming limit diagram analysis of rolled aluminum sheets[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1998,29(2):527-535.
[131]ROSSITER J,BRAHME A,SIMHA M H,et al.A new crystal plasticity scheme for explicit time integration codes to simulate deformation in 3D microstructures:effects of strain path,strain rate and thermal softening on localized deformation in the aluminum alloy 5754 during simple shear[J].International Journal of Plasticity,2010,26(12):1702-1725.
[132]KALIDINDI S R,DONOHUE B R,LI S Y.Modeling texture evolution in equal channel angular extrusion using crystal plasticity finite element models[J].International Journal of Plasticity,2009,25(5):768-779.
[133]MELLBIN Y,HALLBERG H,RISTINMAA M.Recrystallization and texture evolution during hot rolling of copper,studied by a multiscale model combining crystal plasticity and vertex models[J].Modelling and Simulation in Materials Science and Engineering,2016,24(7):075004.
[134]KIM D K,KIM J M,PARK W W,et al.Three-dimensional crystal plasticity finite element analysis of microstructure and texture evolution during channel die compression of IF steel[J].Computational Materials Science,2015,100:52-60.
[135]WU X P,KALIDINDI S R,NECKER C,et al.Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purityα-titanium using a Taylor-type crystal plasticity model[J].Acta Materialia,2007,55(2):423-432.
[136]KNEZEVIC M,LEVINSON A,HARRIS R,et al.Deformation twinning in AZ31:influence on strain hardening and texture evolution[J].Acta Materialia,2010,58(19):6230-6242.
[137]ABDOLVAND H,DAYMOND M R.Internal strain and texture development during twinning:comparing neutron diffraction measurements with crystal plasticity finite-element approaches[J].Acta Materialia,2012,60(5):2240-2248.
[138]ZHANG K,HOLMEDAL B,HOPPERSTAD O S,et al.Multilevel modelling of mechanical anisotropy of commercial pure aluminium plate:crystal plasticity models,advanced yield functions and parameter identification[J].International Journal of Plasticity,2015,66:3-30.
[139]CHOI S H,SHIN E J,SEONG B S.Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression[J].Acta Materialia,2007,55(12):4181-4192.
[140]PANDEY A,KHAN A S,KIM E Y,et al.Experimental and numerical investigations of yield surface,texture,and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J].International Journal of Plasticity,2013,41:165-188.
[141]RAABE D,WANG Y,ROTERS F.Crystal plasticity simulation study on the influence of texture on earing in steel[J].Computational Materials Science,2005,34(3):221-34.
[142]XIE C L,NAKAMACHI E.Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis[J].Materials&Design,2002,23(1):59-68.
[143]RAABE D,SACHTLEBER M,WEILAND H,et al.Grain-scale micromechanics of polycrystal surfaces during plastic straining[J].Acta Materialia,2003,51(6):1539-1560.
[144]ZHAO Z,RADOVITZKY R,CUITI?O A.A study of surface roughening in fee metals using direct numerical simulation[J].Acta Materialia,2004,52(20):5791-5804.
[145]CAO J,YAO H,KARAFILLIS A,et al.Prediction of localized thinning in sheet metal using a general anisotropic yield criterion[J].International Journal of Plasticity,2000,16(9):1105-1129.
[146]NEIL J C,AGNEW S R.Crystal plasticity-based forming limit prediction for non-cubic metals:application to Mg alloy AZ31B[J].International Journal of Plasticity,2009,25(3):379-398.
[147]SIGNORELLI J W,BERTINETTI M A,ROATTA A.A review of recent investigations using the Marciniak-Kuczynski technique in conjunction with crystal plasticity models[J].Journal of Materials Processing Technology,DOI:10.1016/j.jmatprotec.2019.116517.
[148]TADANO Y,YOSHIDA K,KURODA M.Plastic flow localization analysis of heterogeneous materials using homogenizationbased finite element method[J].International Journal of Mechanical Sciences,2013,72:63-74.
[149]FU H H,BENSON D J,ANDRéMEYERS M.Computational description of nanocrystalline deformation based on crystal plasticity[J].Acta Materialia,2004,52(15):4413-4425.
[150]TANG X F,PENG L F,SHI S Q,et al.Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation[J].International Journal of Plasticity,2019,118:147-172.
[151]JIA N,RAABE D,ZHAO X.Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite[J].Acta Materialia,2014,76:238-251.
[152]TASAN C C,DIEHL M,YAN D,et al.Integrated experimentalsimulation analysis of stress and strain partitioning in multiphase alloys[J].Acta Materialia,2014,81,386-400.
[153]TASAN C C,HOEFNAGELS J P M,DIEHL M,et al.Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations[J].International Journal of Plasticity,2014,63:198-210.
[154]TASAN C C,HOEFNAGELS J P M,DIEHL M,et al.Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys[J].Acta Materialia,2014,81:386-400.
[155]KADKHODAPOUR J,BUTZ A,ZIAEI RAD S.Mechanisms of void formation during tensile testing in a commercial,dual-phase steel[J].Acta Materialia,2011,59(7):2575-2588.
[156]ELKHODARY K I,LEE W,CHEESEMAN B,et al.The effects of precipitates and Mn-bearing particles on the high strain-rate compression of high strength aluminum[J].MRS Proceedings,DOI:10.1557/PROC-1225-HH04-08.
[157]FüL?P T,BREKELMANS W A M,GEERS M G D.Size effects from grain statistics in ultra-thin metal sheets[J].Journal of Materials Processing Technology,2006,174(1-3):233-238.
[158]HAOUALA S,SEGURADO J,LLORCA J.An analysis of the influence of grain size on the strength of FCC polycrystals by means of computational homogenization[J].Acta Materialia,2018,148:72-85.
[159]SHENOY M,TJIPTOWIDJOJO Y,MCDOWELL D.Microstructure-sensitive modeling of polycrystalline IN 100[J].International Journal of Plasticity,2008,24(10):1694-1730.
[160]MAYEUR J R,MCDOWELL D L.Bending of single crystal thin films modeled with micropolar crystal plasticity[J].International Journal of Engineering Science,2011,49(12):1357-1366.
[161]NIORDSON C F,KYSAR J W.Computational strain gradient crystal plasticity[J].Journal of the Mechanics and Physics of Solids,2014,62:31-47.
[162]GOLDEN B J,LI D F,GUO Y,et al.Microscale deformation of a tempered martensite ferritic steel:modelling and experimental study of grain and sub-grain interactions[J].Journal of the Mechanics and Physics of Solids,2016,86:42-52.
[163]SUN F W,MEADE E D,O'DOWD N P.Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method[J].International Journal of Plasticity,2019,119:215-229.
[164]CASALS O,OENáLCALáJ.Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals[J].Acta Materialia,2007,55(1):55-68.
[165]CHEN L,JAMES EDWARDS T E,DI GIOACCHINO F,et al.Crystal plasticity analysis of deformation anisotropy of lamellar Ti Al alloy:3D microstructure-based modelling and in-situ microcompression[J].International Journal of Plasticity,2019,119:344-360.
[166]SáNCHEZ-MARTíN R,PéREZ-PRADO M T,SEGURADO J,et al.Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium[J].Acta Materialia,2015,93:114-128.
[167]SELVARAJOU B,SHIN J H,HA T K,et al.Orientation-dependent indentation response of magnesium single crystals:modeling and experiments[J].Acta Materialia,2014,81:358-376.
[168]KUKSENKO V,ROBERTS S,TARLETON E.The hardness and modulus of polycrystalline beryllium from nano-indentation[J].International Journal of Plasticity,2019,116:62-80.
[169]HUSSER E,LILLEODDEN E,BARGMANN S.Computational modeling of intrinsically induced strain gradients during compression of c-axis-oriented magnesium single crystal[J].Acta Materialia,2014,71:206-219.
[170]ZHANG Z,JUN T S,BRITTON T B,et al.Intrinsic anisotropy of strain rate sensitivity in single crystal alpha titanium[J].Acta Materialia,2016,118:317-330.
[171]ZHENG Z,WAHEED S,BALINT D S,et al.Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity[J].International Journal of Plasticity,2018,104:23-38.
[172]SHANG X Q,ZHANG H M,CUI Z S,et al.A multiscale investigation into the effect of grain size on void evolution and ductile fracture:experiments and crystal plasticity modeling[J].International Journal of Plasticity,2020,125:133-149.
[173]KUPKA D,HUBER N,LILLEODDEN E T.A combined experimental-numerical approach for elasto-plastic fracture of individual grain boundaries[J].Journal of the Mechanics and Physics of Solids,2014,64:455-467.
[174]KYSAR J W.Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface.Part I:experiments and crystal plasticity background[J].Journal of the Mechanics and Physics of Solids,2001,49(5):1099-1128.
[175]SWEENEY C A,O'BRIEN B,MCHUGH P E,et al.Experimental characterisation for micromechanical modelling of Co Cr stent fatigue[J].Biomaterials,2014,35(1):36-48.
[176]WU Q,ZIKRY M A.Dynamic fracture predictions of microstructural mechanisms and characteristics in martensitic steels[J].Engineering Fracture Mechanics,2015,145:54-66.
[177]BIELER T R,EISENLOHR P,ROTERS F,et al.The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals[J].International Journal of Plasticity,2009,25(9):1655-1683.
[178]LIU W H,ZHANG X M,TANG J G,et al.Simulation of void growth and coalescence behavior with 3D crystal plasticity theory[J].Computational Materials Science,2007,40(1):130-139.
[179]CLAYTON J D,MCDOWELL D L.Finite polycrystalline elastoplasticity and damage:multiscale kinematics[J].International Journal of Solids and Structures,2003,40(21):5669-5688.
[180]FENG L,ZHANG K S,ZHANG G,et al.Anisotropic damage model under continuum slip crystal plasticity theory for single crystals[J].International Journal of Solids and Structures,2002,39(20):5279-5293.
[181]ROUSSELIER G,LUO M.A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a reduced texture methodology[J].International Journal of Plasticity,2014,55:1-24.
[182]TAKAKI T,YOSHIMOTO C,YAMANAKA A,et al.Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior[J].International Journal of Plasticity,2014,52:105-116.
[183]CHEN X M,LIN Y C,WEN D X,et al.Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation[J].Materials&Design,2014,57:568-577.
[184]CHEN F,CUI Z S,LIU J,et al.Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique[J].Materials Science and Engineering:A,2010,527(21-22):5539-5549.
[185]POPOVA E,STARASELSKI Y,BRAHME A,et al.Coupled crystal plasticity-probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys[J].International Journal of Plasticity,2015,66:85-102.
[186]LI H W,SUN X X,YANG H.A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation,DRX microstructural evolution and mechanical responses in titanium alloys[J].International Journal of Plasticity,2016,87:154-180.
[187]YAMANAKA A.Prediction of deformed-and recrystallized microstructures in metallic materials by crystal plasticity analysis and multi-phase-field method[J].Keikinzoku/Journal of Japan Institute of Light Metals,2015,65(11):542-548.
[188]VONDROUS A,BIENGER P,SCHREIJ?G S,et al.Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production[J].Computational Mechanics,2015,55(2):439-452.
[189]MELLBIN Y,HALLBERG H,RISTINMAA M.A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations[J].Modelling and Simulation in Materials Science and Engineering,2015,23(4):045011.
[190]DIERK R,RICHARD C B.Coupling of a crystal plasticity finiteelement model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium[J].Modelling and Simulation in Materials Science and Engineering,DOI:10.1002/3527606157.ch1.
[191]LI H W,WU C,YANG H.Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing[J].International Journal of Plasticity,2013,51:271-291.
[192]JAFARI M,JAMSHIDIAN M,ZIAEI-RAD S,et al.Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods[J].International Journal of Plasticity,2017,99(1):19-42.
[193]GRAFF S,BROCKS W,STEGLICH D.Yielding of magnesium:from single crystal to polycrystalline aggregates[J].International Journal of Plasticity,2007,23(12):1957-1978.
[194]KRASKA M,DOIG M,TIKHOMIROV D,et al.Virtual material testing for stamping simulations based on polycrystal plasticity[J].Computational Materials Science,2009,46(2):383-392.
[195]LI Q,ZHANG H M,CHEN F,et al.Study on the plastic anisotropy of advanced high strength steel sheet:experiments and microstructure-based crystal plasticity modeling[J].International Journal of Mechanical Sciences,2020,176:105569.
基本信息:
DOI:
中图分类号:TG115
引用信息:
[1]章海明,徐帅,李倩等.晶体塑性理论及模拟研究进展[J].塑性工程学报,2020,27(05):12-32.
基金信息:
国家自然科学基金资助项目(51635005; 51675335; 51705317)