1,610 | 8 | 67 |
下载次数 | 被引频次 | 阅读次数 |
金属疲劳损伤过程复杂,不同载荷类型与服役环境下金属疲劳损伤机理、变形特性和破坏模式存在较大差异。将疲劳损伤全寿命过程按照循环寿命周次划分为超高周、高周、低周和裂纹扩展4个类别,根据变形响应特性和变形机理特征阐述了各类别疲劳损伤的研究现状及发展趋势,涉及宏观尺度、微细观尺度和宏细微观多尺度理论体系。同时结合工程实际案例,以轧辊和燕尾榫作为代表性构件,分析其疲劳损伤行为与影响因素,探讨了目前疲劳理论在工程实践中的应用及挑战,旨在为金属疲劳损伤全寿命理论体系的完善和关键部件健康质量管控提供理论依据和技术指导。
Abstract:The process of metal fatigue damage is complicated, and the fatigue damage mechanism, deformation characteristics and failure mode of metal under different load types and service environments are quite different. According to cycle life cycles, the whole life process of fatigue damage was divided into four categories: very high cycle, high cycle, low cycle and crack propagation. According to the deformation response characteristics and deformation mechanism characteristics, the research status and development trend of each type of fatigue damage were described, involving macro-scale, micro-scale and macro-micro multi-scale theoretical systems.At the same time, taking roll and dovetail as representative components, the fatigue damage behavior and influencing factors were analyzed based on engineering cases, and the application and challenges of fatigue theory in engineering practice were discussed, aiming to provide theoretical basis and technical guidance for the improvement of metal fatigue damage life theoretical system and the health quality control of key components.
[1] HONG Y S,SUN C Q.The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials-an overview [J].Theoretical and Applied Fracture Mechanics,2017,92:331-350.
[2] GRIGORESCU A C,HILGENDORFF P M,ZIMMERMANN M,et al.Cyclic deformation behavior of austenitic Cr-Ni-steels in the very-high-cycle fatigue regime:Part I-Experimental study [J].International Journal of Fatigue,2016,93(2):250-260.
[3] HILGENDORFF P M,GRIGORESCU A C,ZIMMERMANN M,et al.Cyclic deformation behavior of austenitic Cr-Ni-steels in the vhcf regime:Part II-Microstructure-sensitive simulation [J].International Journal of Fatigue,2016,93:261-271.
[4] LUCIA M,FARANGIS R,DANIEL S,et al.Fine granular area linked to very high cycle fatigue in martensitic and bainitic steels:Characterization by means of EBSD-dictionary indexing [J].Scripta Materialia,2021,194:113644.
[5] SCH?NBAUER B M,FITZKA M,KARR U,et al.Variable amplitude very high cycle fatigue of 17-4PH steel with a stepwise S-N curve [J].International Journal of Fatigue,2021,142:105963.
[6] SAKAI T,TAKEDA M,SHIOZAWA K,et al.Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending [J].Journal of the Society of Materials Science,2000,49(7):779-785.
[7] CIAMPAGLIA A,TRIDELLO A,PAOLINO D S.Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts [J].International Journal of Fatigue,2023,170:107500.
[8] INVERNIZZI S,PAOLINO D,MONTAGNOLI F,et al.Comparison between fractal and statistical approaches to model size effects in VHCF [J].Metals,2022,12(9):1499.
[9] DENG H L,LIU B,GUO Y B,et al.Effect of local equivalent stress on fatigue life prediction of carburized Cr-Ni alloy steel based on evaluation of maximum crack sizes [J].Engineering Fracture Mechanics,2021,248,107718.
[10] SHEN J B,FAN H D,ZHANG G Q,et al.Influence of the stress gradient at the notch on the critical distance and life prediction in HCF and VHCF [J].International Journal of Fatigue,2022,162,107003.
[11] NIKITIN I S,NIKITIN A D,STRATULA B A.Mathematical modeling of the VHCF resonance loadings with a progressive damage accumulation[C]// IOP Conference Series:Materials Science and Engineering.Moscow,2021,1191(1):012023.
[12] ALEGRE J M,CUESTA I I,DIAZ A.Closed-form equations for the calculation of stress intensity factors for embedded cracks in round bars subjected to tensile load [J].Theoretical and Applied Fracture Mechanics,2022,121:103438.
[13] MURAKAMI Y,ENDO M.Effects of defects,inclusions and inhomogeneities on fatigue strength [J].International Journal of Fatigue,1994,16(3):163-182.
[14] WANG Q Y,BERARD J Y,DUBARRE A,et al.Gigacycle fatigue of ferrous alloys [J].Fatigue & Fracture of Engineering Materials & Structures,1999,22(8):667-672.
[15] DING M C,ZHANG Y L,XIAN H W,et al.Fatigue strength prediction based on micro scratches [J].Journal of Northeastern University Natural Science,2020,41(5):693-699.
[16] DENG H L,LIU H,LIU Q C,et al.Fatigue strength prediction of carburized 12Cr steel alloy:Effects of evaluation of maximum crack sizes and residual stress distribution [J].Fatigue & Fracture of Engineering Materials & Structures,2020,43(2):342-354.
[17] LI B,GAO T,XUE H Q,et al.Estimation of fatigue crack initiation in the very high cycle fatigue regime for AA7075-T6 alloy using crystal plasticity finite element method [J].Journal of Materials Science,2022,57:10649-10663.
[18] TRIDELLO A,BOURSIER N C,ROSSETTO M,et al.Statistical models for estimating the fatigue life,the stress-life relation,and the P-S-N curves of metallic materials in very high cycle fatigue:A review [J].Fatigue & Fracture of Engineering Materials & Structures,2022,45(2):332-370.
[19] LIU X,WU Q,SU S,et al.Evaluation and prediction of material fatigue characteristics under impact loads:Review and prospects [J].International Journal of Structural Integrity,2022,13(2):251-277.
[20] CONG T,QIAN G,ZHANG G,et al.Effects of inclusion size and stress ratio on the very-high-cycle fatigue behavior of peaitic steel [J].International Journal of Fatigue,2021,142:105958.
[21] MACEY C.Gigacycle fatigue testing of metals using ultrasonic resonance [J].Quality,2023,62(8):36-36.
[22] WU Z R,HU X T,LI Z X,et al.Evaluation of fatigue life for titanium alloy TC4 under variable amplitude multiaxial loading [J].Fatigue & Fracture of Engineering Materials & Structures,2015,38(4):402-409.
[23] XU S,ZHU S P,HAO Y Z,et al.A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys [J].Engineering Failure Analysis,2018,93:55-63.
[24] KAROLCZUK A,MACHA E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials [J].International Journal of Fatigue,2005,134(3-4):267-304.
[25] WANG X W,SHANG D G,SUN Y J.A weight function method for multiaxial low-cycle fatigue life prediction under variable amplitude loading [J].The Journal of Strain Analysis for Engineering Design,2018,53(4):197-209.
[26] INCE A,GLINKA G.A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings [J].International Journal of Fatigue,2014,62:34-41.
[27] BEMFICA C,CARNEIRO L,MAMIYA E N,et al.Fatigue and cyclic plasticity of 304L stainless steel under axial-torsional loading at room temperature [J].International Journal of Fatigue,2019,125:349-361.
[28] LIU Y M,MAHADEVAN S.Strain-based multiaxial fatigue damage modelling [J].Fatigue & Fracture of Engineering Materials & Structures,2005,28(12):1177-1189.
[29] CUI X D,XIAO J,et al.A simplified continuum damage mechanics based modeling strategy for cumulative fatigue damage assessment of metallic bolted joints [J].International Journal of Fatigue,2020,131:105302.
[30] PENG Y,LIU Y,LI H R,et al.Research on low cycle fatigue life prediction considering average strain [J].Materials Research Express,2022,13(9):016521.
[31] TORABI A R,KAMYAB M.Notch ductile failure with significant strain-hardening:The modified equivalent material concept [J].Fatigue & Fracture of Engineering Materials and Structures,2019,42(2):439-453.
[32] LI Z L,SHI D Q,LI S L,et al.A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures [J].International Journal of Fatigue,2019,126:6-19.
[33] YAO W X,YE B,ZHENG L C.A verification of the assumption of anti-fatigue design [J].International Journal of Fatigue,2001,23(3):271-277.
[34] 李浩然.基于临界域本征损伤耗散的新型应力场强理论 [D].秦皇岛:燕山大学,2019.LI Haoran.A new theory of stress field intensity based on internal damage dissipation in critical domain [D].Qinhuangdao:Yanshan University,2019.
[35] 彭艳,李浩然,刘洋,等.基于均布临界域本征损伤耗散的疲劳极限等量关系 [J].机械工程学报,2019,55(10):54-61.PENG Yan,LI Haoran,LIU Yang,et al.Fatigue limit equivalent relation based on uniform intrinsic damage dissipation in critical domain [J].Journal of Mechanical Engineering,2019,55(10):54-61.
[36] 彭艳,李浩然.考虑附加强化效应的多轴高周疲劳损伤演化模型 [J].机械工程学报,2015,51(16):135-142.PENG Yan,LI Haoran.Multi-axis high-cycle fatigue damage evolution model considering additional Strengthening effect [J].Journal of Mechanical Engineering,2015,51(16):135-142.
[37] NOBAN M,JAHED H,WINKLER S,et al.Fatigue characterization and modeling of 30CrNiMo8HH under multiaxial loading [J].Materials Science and Engineering A,2011,528(6):2484-2494.
[38] XIAO Y C,LI S,GAO Z.A continuum damage mechanics model for high cycle fatigue [J].International Journal of Fatigue,1998,20(7):503-508.
[39] OTTOSEN N S,STENSTRM R,RISTINMAA M.Continuum approach to high-cycle fatigue modeling [J].International Journal of Fatigue,2008,30(6):996-1006.
[40] AGBESSI K,SAINTIER N,PALIN-LUC T.Microstructure-based study of the crack initiation mechanisms in pure copper under high cycle multiaxial fatigue loading conditions [J].Procedia Structural Integrity,2016,2:3210-3217.
[41] 阚前华,康国政,徐祥.非线性本构关系在 ABAQUS中的实现 [M].北京:科学出版社,2019.KAN Qianhua,KANG Guozheng,XU Xiang.Implementation of nonlinear Constitutive Relations in ABAQUS [M].Beijing:Science Press,2019.
[42] KOO S Y,HAN J,LEE H,et al.Determination of Chaboche combined hardening parameters with dual backstress for ratcheting evaluation of AISI 52100 bearing steel [J].International Journal of Fatigue,2019,122:152-163.
[43] 张伟,李如俊,葛士涛,等.基于内禀耗散理论的高周疲劳双尺度伤演分析[J/OL].机械工程学报,[2024-03-29].http://kns.cnki.net/kcms/detail/11.2187.TH.20240325.0854.010.html.ZHANG Wei,LI Rujun,GE Shitao,et al.Two-scale analysis of high-cycle fatigue damage based on intrinsic dissipation theory [J/OL].Journal of Mechanical Engineering[2024-03-29].http://kns.cnki.net/kcms/detail/11.2187.TH.20240325.0854.010.html.
[44] LIANG W,CONLE F A,TOPPER T H,et al.A review of effective-strain based and multi r-ratio crack propagation models and a compari-son of simulated results using the two approaches [J].International Journal of Fatigue,2021,142:105920.
[45] ESCALERO M,MUNIZ-CALVENTE M,ZABALA H,et al.A methodology for simulating plasticity induced crack closure and crack shape evolution based on elastic-plastic fracture parameters[J].Engi-neering Fracture Mechanics,2021,241:107412
[46] GUO W L,YU P S.Three dimensional fracture and fatigue mechanics of structures and its application in aeronautical engineering [J].Acta Mechanica Solida Sinica,2010,31(5):553-571.
[47] CUI W C,WANG F,HUANG X P.A unified fatigue life prediction method for marine structures [J].Marine Structures,2011,24(2):153-181.
[48] 李如俊.深海耐压球壳表面三维裂纹扩展行为研究 [D].镇江:江苏科技大学,2021.LI Rujun.Study on three-dimensional crack growth behavior on the surface of deep-sea spherical pressure hull [D].Zhenjiang:Jiangsu University of Science and Technology,2021.
[49] 韩芸,黄小平,崔维成.有效应力强度因子幅值计算模型的验证 [J].船舶力学,2005,9(5):97-104.HAN Yun,HUANG Xiaoping,CUI Weicheng.Validation of an effective stress intensity factor calculation model [J].Journal of Ship Mechanics,2005,9(5):97-104.
[50] SUN L,HUANG Y C,HUANG X P.An improved unique fatigue crack growth rate curve model and determination of the model shape exponents [J].Journal of Marine Science and Application,2023,21(4):104-115.
[51] 刘强.基于数字图像相关的裂纹端部变形场研究 [D].上海:上海交通大学,2017.LIU Qiang.Investigation of deformation field near crack tip by digital image correlation [D].Shanghai:Shanghai Jiao Tong University,2017.
[52] 黄如旭,万正权.三维裂纹扩展数值预报方法研究 [J].中国造船,2019,60(1):11-21.HUANG Ruxu,WAN Zhengquan.Numerical prediction method for 3d crack growth [J].Shipbuilding of China,2019,60(1):11-21.
[53] HE H F,LIU H J,ZHU C C,et al.Analysis of the fatigue crack initiation of a wind turbine gear considering load sequence effect [J].International Journal of Damage Mechanics,2019,1(1):1-20.
[54] NGOULA D T,BEIER H T,VORMWALD M.Fatigue crack growth in cruciform welded joints:Influence of residual stresses and of the weld toe geometry [J].International Journal of Fatigue,2016,101(2):253-262.
[55] CHAKHERLOU T,MIRZAJANZADEH M,VOGWELL J,et al.Investigation of the fatigue life and crack growth in torque tightened bolted joints [J].Aerospace Science and Technology,2010,15(4):304-313.
[56] WANG Z,YUE Y,LI Y Z.Prediction of dwell-fatigue crack growth for titanium alloys based on zencrack [J].China Offshore Platform,2018,33(1):22-28.
[57] SOBOTKA J C,MCCLUNG R C.Automatic 3D crack placement using the Python API in ABAQUS CAE [J].Science in the Age of Experience,2018:1-9.
[58] LI R J,ZHU Y M,FANG W J,et al.Multi-crack interaction and influence on the spherical pressure hull for a deep-sea manned submersible [J].Journal of Marine Science and Application,2021,20:1-13.
[59] PALIT P,PATEL S N,MATHUR J,et al.Analysis of a progressive failure of a work roll in hot strip mill [J].Journal of Failure Analysis and Prevention,2019,19:1297-1303.
[60] SONODA A,HAMADA S,NOGUCHI H.Analysis of small spalling mechanism on hot rolling mill roll surface [J].Memoirs of the Faculty of Engineering,Kyushu University,2009,69(1):1-14.
[61] 温宏权,李彦龙,瞿海霞.轧辊材料疲劳裂纹扩展理论计算与分析 [J].宝钢技术,2015,(4):57-61.WEN Hongquan,LI Yanlong,QU Haixia.Calculation and analysis of fatigue crack propagation in roll material [J].Baosteel Technology,2015,(4):57-61.
[62] 孙登月,张远芳,查显文,等.液芯大压下轧机轧辊的热力耦合分析及疲劳寿命计算[J].燕山大学学报,2011,35(1):40-45.SUN Dengyue,ZHANG Yuanfang,CHA Xianwen,et al.Thermal coupling analysis and fatigue life calculation of roll in liquid core heavy reduction mill [J].Journal of Yanshan University,2011,35(1):40-45.
[63] 宋守许,郁炯.考虑疲劳损伤的支撑辊主动再制造时机决策方法[J].中国机械工程,2021,32(5):565-571.SONG Shouxu,YU Jiong.Timing decision method for predecisional remanufacturing of backup roll considering fatigue damage[J].China Mechanical Engineering,2021,32(5):565-571.
[64] HU K J,XUE R J,SHI Q H,et al.FEM simulation of thermo-mechanical stress and thermal fatigue life assessment of high-speed steel work rolls during hot strip rolling process [J].Journal of Thermal Stresses,2022,45(7):538-558.
[65] BENASCIUTTI D.On thermal stress and fatigue life evaluation in work rolls of hot rolling mill [J].The Journal of Strain Analysis for Engineering Design,2012,47(5):297-312.
[66] LI H R,PENG Y,LIU Y,et al.Corrected stress field intenstity approach based on averaging superior limit of intrinsic damage dissipation work [J].Journal of Iron and Steel Research(International),2018,25(10):1094-1103.
[67] 何明鉴.机械构件的微动疲劳 [M].北京:国防工业出版社,1994.
[68] RAJASEKARAN R,NOWELL D.Fretting fatigue in dovetail blade roots:Experiment and analysis [J].2006,39(10),1277-1285.
[69] 马刚.压气机燕尾榫联接结构微动疲劳寿命研究 [D].南京:南京航空航天大学,2004.MA Gang.Research on fretting fatigue life of dovetail joint structure in compressor [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2004.
[70] RUIZ C,BODDINGTON P H B,CHEN K C.An investigation of fatigue and fretting in a dovetail joint [J].Experimental Mechanics,1984,24(3):208-217.
[71] SMITH K N,TOPPER T H,WATSON P.A stress-strain function for the fatigue of metals (Stress-strain function for metal fatigue including mean stress effect) [J].Journal of Materials,1970,(5):767-778.
[72] ROOKE D P,JONES D A.Stress intensity factors in fretting fatigue [J].Journal of Strain Analysis,1979,14:1-7.
[73] 李爱民.圆弧端齿结构设计方法与微动疲劳寿命预测模型研究 [D].南京:南京航空航天大学,2015.LI Aimin.Research on design method of curvic couplings and fretting fatigue life prediction model [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
[74] CHABOCHE J L,LESNE P M.A non-linear continuous fatigue damage model [J].Fatigue & Fracture of Engineering Materials & Structures,1988,11(1):1-17.
[75] 王延荣.航空发动机零件可靠性安全性设计 [M].北京:航空工业出版社,2018.WANG Yanrong.The reliability and safety design of aero engine components [M].Beijing:Aviation Industry Press,2018.
[76] SUN S Y,LI S W,YUE Z F,et al.Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature [J].Tribology International,2020:142105986-105986.
[77] 荆炀.燕尾榫结构微动疲劳有限元分析研究 [D].兰州:兰州理工大学,2015.JING Yang.FEM analysis on fretting fatigue of the dovetail construction [D].Lanzhou:Lanzhou University of Technology,2015.
基本信息:
DOI:
中图分类号:TG111.8
引用信息:
[1]彭艳,张伟,李如俊等.金属疲劳损伤全寿命过程及工程应用综述[J].塑性工程学报,2024,31(04):117-130.
基金信息:
国家自然科学基金资助项目(52075471);国家自然科学基金区域创新发展联合基金重点支持资助项目(U20A20289); 国家留学基金创新型人才国际合作培养项目(CXXM20240010); 河北省自然科学基金创新群体资助项目(E2021203011)