41 | 0 | 1 |
下载次数 | 被引频次 | 阅读次数 |
针对TiBw/TA15耐高温钛基复合材料加筋壁板,建立了其有限元数值模型,并进行了试验验证,使用特征值屈曲分析和弧长法研究了超塑成形/扩散连接(SPF/DB)加筋壁板在高温轴压环境下的屈曲模态、载荷以及后屈曲行为。结果表明,随着筋条宽度和筋条数量的变化,结构呈现出蒙皮局部屈曲、蒙皮整体屈曲以及结构整体屈曲3种不同的屈曲模式。随着温度的升高,不同屈曲模态对应的屈曲载荷Fcr均下降较为明显。使用钛基复合材料加筋壁板结构的屈曲载荷Fcr和破坏载荷Fp均显著高于TC4钛合金。
Abstract:The finite element numerical model of TiBw/TA15 high-temperature resistant titanium matrix composite stiffened panel was established and test verification was carried out. Eigenvalue buckling analysis and arc length method were used to study the buckling mode, load and post-buckling behavior of superplastic forming/diffusion bonding(SPF/DB)stiffened panel under high-temperature axial pressure condition. The results show that as the width and number of stiffeners change, the structure presents three different buckling modes, which are local buckling of skin, whole buckling of skin and whole buckling of structure. With the increase of temperature, the bulkling load Fcr corresponding to different buckling modes decreases significantly. The bulkling load Fcr and the failure load Fp of the structure using titanium matrix composite stiffened panels are significantly higher than that of TC4 titanium alloy.
[1] 王昭惠,马玉娥.筋条形式和制造工艺对轴压载荷下钛合金加筋板力学行为模式的影响分析[J].机械强度,2022,44(1):148-154.WANG Zhaohui,MA Yu′e.Analysis of the influence of stiffener type and manufacturing process on mechanical behaviour of titanium alloy stiffened panel under axial compression[J].Journal of Mechanical Strength,2022,44(1):148-154.
[2] 万春华,段世慧,吴存利.加筋结构后屈曲有限元建模方法研究[J].机械科学与技术,2015,34(5):795-798.WAN Chunhua,DUAN Shihui,WU Cunli.Study on the finite element modeling for post-buckling analysis of the stiffened structure[J].Mechanical Science and Technology for Aerospace Engineering,2015,34(5):795-798.
[3] HUGHES O F,GHOSH B,CHEN Y.Improved prediction of simultaneous local and overall buckling of stiffened panels[J].Thin-Wall Structures,2004,42(6):827-856.
[4] 张浩宇,何宇廷,冯宇,等.先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J].航空材料学报,2016,36(4):55-63.ZHANG Haoyu,HE Yuting,FENG Yu,et al.Buckling and post-buckling performance of advanced composite stiffened panel under compression[J].Journal of Aeronautical Materials,2016,36(4):55-63.
[5] 袁坚锋.基于显式有限元的复合材料加筋板后屈曲分析方法研究[J].机械设计与制造工程,2021,50(4):73-76.YUAN Jianfeng.Research on post-buckling for composite stiffened panel based on explicit FEM[J].Machine Design and Manufacturing Engineering,2021,50(4):73-76.
[6] BENSON S,DOWNES J,DOW R S.Overall buck-ling of lightweight stiffened panels using an adapted orthotropic panel method[J].Engineering Structures,2015,85:107-117.
[7] EIRIK B,J?RGEN A.A simplified method for elastic large deflection analysis of panels and stiffened panels due to local buckling[J].Thin Walled Structures,2002,40(11):925-953.
[8] JABERZADEH E,AZHARI M.Elastic and inelastic local buckling of stiffened panels subjected to non-uniform compression using the Galerkin method[J].Applied Mathematical Modelling,2009,33(4):1874-1885.
[9] 黄丽华,刘鹏洋,曲激婷.正交各向异性加筋板屈曲分析方法研究[J].计算力学学报,2021,38(1):78-83.HUANG Lihua,LIU Pengyang,QU Jiting.Study on the buckling algorithm of orthotropic stiffened panel[J].Chinese Journal of Computational Mechanics,2021,38(1):78-83.
[10] 郭巧荣,张西峰,朱晓红.复合材料加筋板结构屈曲分析[J].中国民航大学学报,2019,37(1):46-49.GUO Qiaorong,ZHANG Xifeng,ZHU Xiaohong.Buckling analysis on stiffened composite structure[J].Journal of Civil Aviation University of China,2019,37(1):46-49.
[11] KIM Y H,NOOR A K.Buckling and post buckling of composite panels with cutouts subjected to combined loads[J].Finite Elements in Analysis and Design,1996,(22):163-185.
[12] 唐其琴,李伯阳.基于理想点法的加筋板屈曲承载力优化[J].装备环境工程,2019,16(2):37-41.TANG Qiqin,LI Boyang.Buckling capacity optimization of stiffened panels based on ideal point method[J].Equipment Environmental Engineering,2019,16(2):37-41.
[13] 陈静,沈安澜.复合材料开孔薄壁加筋板剪切屈曲及后屈曲研究[J].直升机技术,2018,(1):13-19.CHEN Jing,SHEN Anlan.Buckling and post-buckling of composite shear stiffened panels with cutout[J].Helicopter Technique,2018,(1):13-19.
[14] 马开开.铝合金加筋板结构强度研究[D].哈尔滨:哈尔滨工程大学,2019.MA Kaikai.Study on structural strength of aluminum alloy stiffened panel[D].Harbin:Harbin Engineering University,2019.
[15] 谭翔飞,何宇廷,冯宇,等.航空复合材料加筋板剪切稳定性及后屈曲承载性能[J].复合材料学报,2018,35(2):320-331.TAN Xiangfei,HE Yuting,FENG Yu,et al.Stability and post-bulk composite stiffened panel under shear loading[J].Acta Materiae Compositae Sinica,2018,35(2):320-331.
[16] 高伟,刘存,陈顺强.变厚度复合材料加筋板轴压试验及分析方法[J].航空学报,2022,43(11):526724.GAO Wei,LIU Cun,CHEN Shunqiang.Axial compression test and analysis method of compression test panels with variable thickness[J].Acta Aeronautica et Astronautica Sinica,2022,43(11):526724.
[17] ZHAO Z C,XU J H,FU Y C,et al.An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation[J].Chinese Journal of Aeronautics,2018,31(1):178-186.
[18] 王丙阳,周炳如,王敬钊,等.钛合金SPF/DB 3层结构制件的射线检测[J].无损检测,2014,36(9):62-66.WANG Bingyang,ZHOU Bingru,WANG Jingzhao,et al.RT of titanium alloy SPF/DB 3-layer structure parts[J].Nondestructive Testing,2014,36(9):62-66.
[19] 刘莹莹,钱健行,付明杰,等.TiBw/TAl5复合材料板材超塑变形行为研究[J].航空制造技术,2022,65(4):80-86.LIU Yingying,QIAN Jianxing,FU Mingjie,et al.Superplastic deformation behavior of TiBw/TA15 compositesheet[J] Aeronautical Manufacturing Technology,2022,65(4):80-86.
[20] 张旭,张哲平,杨尚谕,等.基于特征值和弧长法计算套管抗挤强度[J].钻采工艺,2022,45(1):35-40.ZHANG Xu,ZHANG Zheping,YANG Shangyu,et al.Calculation of casing collapse resistance based on eigenvalue and arc length method[J].Drilling & Production Technology,2022,45(1):35-40.
[21] GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].GB/T 228.1—2021,Metal materials—Tensile test—Part 1:Room temperature test method[S].
[22] GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法[S].GB/T 228.2—2015,Metal materials—Tensile test—Part 2:High temperature test method[S].
[23] 王伟.TC4 钛合金薄壁件退火变形数值模拟及试验研究[D].南京:南京航空航天大学,2015.WANG Wei.Numerical simulation and experimental study on annealing distortion of Ti6Al4V thin-walled parts[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
基本信息:
DOI:
中图分类号:V214.8;TB333
引用信息:
[1]王钧仡,王富鑫,付明杰等.钛基复合材料SPF/DB加筋壁板高温屈曲行为研究[J].塑性工程学报,2025,32(05):103-111.
基金信息:
国家重点研发计划(2022YFB3708300); 航空科学基金资助项目(2019ZF025003)